Kinetics of Veratryl Alcohol Oxidation by Lignin Peroxidase and in situ Generated Hydrogen Peroxide in an Electrochemical Reactor

Author(s):  
K. B. Lee ◽  
M. B. Gu ◽  
S.-H. Moon
1997 ◽  
Vol 51 (1) ◽  
pp. 74-80 ◽  
Author(s):  
Peter Jacob ◽  
Bernhard Wehling ◽  
Wieland Hill ◽  
Dieter Klockow

The described investigations are focused on peroxides occurring as products in atmospheric chemical processes, namely, hydrogen peroxide, methylhydroperoxide, hydroxymethylhydroperoxide, bis-(hydroxymethyl)peroxide, 1-hydroxyethylhydroperoxide, bis-(hydroxyethyl)peroxide, and hydroxymethylmethylperoxide. The compounds are identified and determined through the position and intensity of their characteristic O–O stretching bands in the range between 767 and 878 cm−1. Time-resolved Raman spectroscopy of peroxide solutions permits the in situ investigation of pathways and kinetics of reactions between peroxides and aldehydes.


Processes ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 1476
Author(s):  
Daniele Di Menno Di Bucchianico ◽  
Wander Y. Perez-Sena ◽  
Valeria Casson Moreno ◽  
Tapio Salmi ◽  
Sébastien Leveneur

The use of hydrogen peroxide as an oxidizing agent becomes increasingly important in chemistry. The example of vegetable oil epoxidation is an excellent illustration of the potential of such an agent. This reaction is traditionally performed by Prileschajew oxidation, i.e., by the in situ production of percarboxylic acids. Drawbacks of this approach are side reactions of ring-opening and thermal runaway reactions due to percarboxylic acid instability. One way to overcome this issue is the direct epoxidation by hydrogen peroxide by using γ-alumina. However, the reaction mechanism is not elucidated: does hydrogen peroxide decompose with alumina or oxidize the hydroxyl groups at the surface? The kinetics of hydrogen peroxide consumption with alumina in homogeneous liquid and heterogeneous liquid-liquid systems was investigated to reply to this question. Bayesian inference was used to determine the most probable models. The results obtained led us to conclude that the oxidation mechanism is the most credible for the heterogeneous liquid-liquid system.


Biochemistry ◽  
1995 ◽  
Vol 34 (51) ◽  
pp. 16860-16869 ◽  
Author(s):  
Aditya Khindaria ◽  
Isao Yamazaki ◽  
Steven D. Aust

Holzforschung ◽  
2000 ◽  
Vol 54 (2) ◽  
pp. 165-170 ◽  
Author(s):  
Mikhail Yu. Balakshin ◽  
Chen-Loung Chen ◽  
Josef S. Gratzl ◽  
Adrianna G. Kirkman ◽  
Harald Jakob

Summary Kinetics of the laccase-catalyzed oxidation of veratryl alcohol with dioxygen in the presence of 2,2′-Azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diamonium salt (ABTS), the mediator, were studied to elucidate the possible reaction mechanism and the role of the mediator in this reaction. The reaction follows a pseudo-first order reaction law. The first order rate constant (κ) is dependent on the Mediator/Substrate (M/S) ratio and has a maximum at M/S molar ratio of 0.15. The kinetic studies show that the mechanism of veratryl alcohol oxidation with dioxygen-laccase-ABTS is rather complex and includes different reaction pathways. The mediator is involved in competitive reactions. It has been suggested that at low mediator concentration, the veratryl alcohol is oxidized via the laccase redox cycle. The mediator acts mostly as a laccase activator at a M/S ratio lower than 0.15. With increasing ABTS concentration with respect to the substrate concentration, ABTS acts increasingly as a cosubstrate competing with the original substrate for active centers of the laccase. This results in inhibition of veratryl alcohol oxidation in the enzyme cycle and increases the role of substrate oxidation by an oxidized mediator.


2019 ◽  
Vol 17 ◽  
pp. 1066-1074 ◽  
Author(s):  
Jefferson O. Romero ◽  
Elena Fernández-Fueyo ◽  
Fabián Avila-Salas ◽  
Rodrigo Recabarren ◽  
Jans Alzate-Morales ◽  
...  

2017 ◽  
Author(s):  
◽  
Ghassan Hamad Abdulla

[ACCESS RESTRICTED TO THE UNIVERSITY OF MISSOURI AT AUTHOR'S REQUEST.] Crude oil contains natural organic components such as organosulfur compounds, and these compounds largely remain in refined petroleum products such as gasoline, diesel and jet fuel products. During fuel combustion, sulfur was emitted as sulfur dioxide or sulfate, which is one of the main causes of air pollution and acid rain. The oil price is inversely proportional to the sulfur content because upgrade of heavy, high-sulfur-containing oil is much more difficult than the light feeds. Many regulations have been established by different countries to control sulfur level in fuels; in the U.S. the maximum required concentration is 15 ppm (parts per million) sulfur in diesel. The most commonly used technology to remove sulfur from diesel fuel is hydrodesulfurization (HDS). The major drawback of HDS is the harsh operating conditions that require high temperatures and pressures with consumption of a large amount of hydrogen. The HDS process is only able to reduce sulfur content to about 500 ppm in diesel. Further reduction requires more intense processing with a significant increase in hydrogen usage, particularly in removing the refractory sulfur compounds, such as benzothiophene (BT), dibenzothiophene (DBT), and their alkyl derivatives. In this dissertation, an efficient and cost-effective process for oxidation of organosulfur compounds (OSCs) in diesel has been developed and investigated. A divided-cell trickle bed electrochemical reactor (TBER) was first developed to produce hydrogen peroxide. The divided-cell trickle bed electrochemical reactor (TBER) has a porous cathode composed of carbon black and polytetrafluoroethylene. It was designed and fabricated to have hydrophobic and hydrophilic components for liquid and gas flows. Hydrogen peroxide generation was successfully demonstrated from reducing oxygen in concentrated alkaline electrolyte solutions. An important feature of the reactor was a cathode made with stainless steel meshes that divide it into four packed-bed cells. This division into sectional cathode resulted in a concentration of hydrogen peroxide that more than doubles that produced in an undivided cathode. The much-improved performance was attributed to the even distribution of the electrolyte and oxygen in the cathode bed, as well as an effective mass transport of oxygen from the gas phase to the electrolyte-cathode interface. After the successful production of hydrogen peroxide, the TBER was employed for in situ oxidation desulfurization of diesel fuel. The possibility of diesel desulfurization with in situ generated hydrogen peroxide in the presence of DBT was systematically investigated. The maximum concentration of hydrogen peroxide after two-hour electrolysis was 31.79 mM without diesel, whereas in the presence of 10% diesel (by volume) in the electrolyte was 18.0 mM. DBT was successfully oxidized in situ in the TBER, with conversion efficiency of 97.75% in six hours. To further improve the efficiency of the hydrogen peroxide production, cathode was modified with MnO2, a potentially more active catalyst for hydrogen peroxide production in alkaline electrolytes. It was found that incorporation of MnO2 indeed promoted in situ oxidation of DBT which was attributed to more hydrogen peroxide produced. The results showed the in situ oxidation process in the divided-cell TBER is a promising and environmentally friendly approach for desulfurization of diesel.


Sign in / Sign up

Export Citation Format

Share Document